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a b s t r a c t 

Objectives: The World Health Organization recommends mass drug administration (MDA) with 

azithromycin to eliminate trachoma as a public health problem. MDA decisions are based on prevalence 

estimates from two-stage cluster surveys. There is a need to mathematically evaluate current trachoma 

survey designs. Our study aimed to characterize the effects of the number of units sampled on the pre- 

cision and cost of trachomatous inflammation–follicular (TF) estimates. 

Methods: A population of 30 districts was simulated to represent the breadth of possible TF distribu- 

tions in Amhara, Ethiopia. Samples of varying numbers of clusters (14–34) and households (10–60) were 

selected. Sampling schemes were evaluated based on precision, proportion of incorrect and low MDA 

decisions made, and estimated cost. 

Results: The number of clusters sampled had a greater impact on precision than the number of house- 

holds. The most efficient scheme depended on the underlying TF prevalence in a district. For lower preva- 

lence areas ( < 10%) the most cost-efficient design (providing adequate precision while minimizing cost) 

was 20 clusters of 20–30 households. For higher prevalence areas ( > 10%), the most efficient design was 

15–20 clusters of 20–30 households. 

Conclusions: For longer-running programs, using context-specific survey designs would allow for practical 

precision while reducing survey costs. Sampling 15 clusters of 20–30 households in suspected moderate- 

to-high prevalence districts and 20 clusters of 20–30 households in districts suspected to be near the 5% 

threshold appears to be a balanced approach. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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NTRODUCTION 

In countries where trachoma remains endemic, prevalence is 

onitored through periodic surveys in a random sample of vil- 

ages. These surveys generate evidence for how long trachoma 

nterventions, including mass drug administration (MDA) with 

zithromycin, are needed in each surveyed district. The World 

ealth Organization (WHO) MDA guidelines recommend five an- 

ual rounds of MDA if the trachomatous inflammation–follicular 

TF) prevalence among children aged 1–9 years in a district is ≥
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0%, three rounds for a prevalence of 10–29.9%, and one round for 

 prevalence of 5–9.9% ( Solomon, 2016 ). A key threshold for elimi- 

ating trachoma as a public health problem is a district prevalence 

f TF < 5% among children aged 1–9 years. 

Current survey sampling schemes for determining the district- 

evel TF prevalence are relatively similar across trachoma-endemic 

ountries, and are often based on published survey design recom- 

endations ( Solomon et al., 2018 ). The currently recommended 

ampling design is a two-stage cluster design whereby approxi- 

ately 20–30 villages (clusters) are selected in the first stage of 

ampling, and approximately 25–30 households are selected within 

ach cluster in the second stage ( WHO, 2014 ). The design for sur- 

eys measuring the impact of trachoma interventions is based 

n an assumption of a 4% TF prevalence with ± 2% precision 
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mong children aged 1–9 years ( Solomon et al., 2018 ). In real- 

ty, many programs are surveying 25–30 clusters to reach the re- 

uired number of children ( Sata et al., 2021 ; Sanders et al., 2019 ).

hile analysis of optimal survey designs has been performed for 

ther neglected tropical diseases (NTD) ( Flueckiger et al., 2017 ; 

nowles et al., 2017 ; Sturrock et al., 2010 ; Weiss et al., 2021 ), there

ave been fewer formal analyses conducted on trachoma survey 

esign ( Flueckiger et al., 2017 ; Mcleod et al., 2020 ) . 

Although determining the district-level prevalence of trachoma 

s important because it allows for effective targeting of interven- 

ions, money spent by control programs on surveys is money un- 

vailable for interventions such as MDA and surgical services. A re- 

ent study evaluating trachoma survey costs within the Amhara 

egion of Ethiopia reported a median cost per survey cluster of 

752, and thus $15,040 for a 20-cluster district-level survey and 

22,560 for a 30-cluster survey ( Slaven et al., 2020 ). Considering 

hat Ethiopia had 673 trachoma-endemic districts in 2020, the cost 

f conducting country-wide surveys to gauge prevalence rates over 

he next 10 years will be substantial for the country’s trachoma 

ontrol program — ranging from $10–30 million if we extend these 

istrict-level calculations to the whole country ( WHO, 2020b ). Re- 

ent work has demonstrated the importance and cost-effectiveness 

f monitoring progress towards elimination as a public health 

roblem globally ( Solomon et al., 2020 ). In settings like Ethiopia, 

owever, many districts are not reaching the elimination thresh- 

ld at impact survey, with some districts requiring three or more 

ounds of surveys and 12 or more years of annual MDA before po- 

entially reaching the threshold ( Sata et al., 2021 ; Stewart et al., 

019 ). In the early phases of trachoma control programs, a ‘one- 

ize-fits-all’ approach is warranted, since little is known about the 

rachoma burden in the area. However, as programs run longer, 

nd serial survey data become available, a data-driven approach to 

uide sampling strategies allows for increased efficiency with re- 

pect to cost and time. 

The objective of our study was to characterize the effect that 

arying the number of selected clusters and households has on 

he precision of TF estimates relative to the WHO-recommended 

DA decision cut-points within a region with one of the highest 

urdens of trachoma. Additionally, this study aimed to analyze the 

ost-efficiency of various cluster sampling schemes. 

ETHODS 

thical considerations 

Survey protocols used in Amhara were approved by the Emory 

niversity Institutional Review Board (protocol 079-2006) and the 

mhara Regional Health Bureau. Survey protocols are also re- 

iewed by the Tropical Data Service ( GTMP, 2021 ). 

urvey methodology 

In the first sampling stage of a district-level trachoma survey 

n Ethiopia, approximately 30 clusters (villages) are either selected 

rom an enumerated list by simple random sample (SRS) or by us- 

ng a method where selection probabilities are proportional to es- 

imated village size (PPES). In the second sampling stage, one seg- 

ent (parts of villages that are geographically close) is randomly 

elected from each sampled cluster. These segments normally con- 

ist of 25–30 households (approximately the number of households 

hat a field team can reach in one day) ( Missamou et al., 2018 ). In

 typical survey, trachoma graders evaluate every individual aged 

1 year old for TF, trachomatous inflammation–intense (TI), and 

rachomatous trichiasis (TT) ( WHO, 2010 ). 
102 
eneration of simulated population dataset 

To compare the precision and cost of different survey sam- 

ling schemes, a population database was created using SAS 9.4 

SAS Institute, Cary, NC, USA) simulating the population of the 

mhara region, Ethiopia. The population TF distribution was char- 

cterized using 17 empirical surveys conducted by the Amhara Tra- 

homa Control Program in 2017, using the Tropical Data system 

 https://tropicaldata.org ). Our simulated dataset was based on the 

opulation observed in these 17 districts, with 30 districts cre- 

ted to represent the breadth of possible TF distributions within 

 setting such as Ethiopia. The simulated database represented 

ndividuals aged 1–9 years with their randomly assigned TF sta- 

us, as this analysis focused only on the TF indicator. For 24 dis- 

ricts the default prevalence was set between 8% and 40%; for 

ix districts it was set at 0–5%. These values represented proba- 

le district prevalence rates in Amhara, as of 2017 ( Nash et al., 

018 ; Sata et al., 2021 ; Stewart et al., 2019 ) . The SAS macro

ritten to create the dataset (found at https://github.com/jgallini/ 

rachoma-survey-sample-macros ) can be used to recreate the anal- 

sis performed in this study, and can be adapted to simulate dif- 

erent populations in Amhara or other areas. 

luster and household sampling 

Simulated samples were drawn with 14, 16, 18, 20, 22, 24, 26, 

8, 30, 32, and 34 clusters per district. This distribution of selected 

lusters was selected to observe the trends in prevalence precision 

elative to a specified default value of 30. In the second stage, one 

egment (30 households exactly for this simulation) was selected 

nd all children aged 1–9 were used in the sample. TF prevalence 

stimates weighted for population were calculated for each of the 

0 districts for all samples. 

To analyze the effect of the number of second-stage units se- 

ected (households), the segment structure was temporarily ig- 

ored. Samples were drawn using 15, 20, 25, and 30 clusters in the 

rst stage. Iterations for the second stage were 10, 20, 30, 40, 50, 

nd 60 households, resulting in 24 possible sampling schemes. Ac- 

ording to previous surveys carried out in Amhara, the average sur- 

ey team can evaluate about 30 households in 1 day ( Stewart et al., 

019 ). This analysis did not explore beyond 2 days of surveying (60 

ouseholds), as any longer was deemed unrealistic. 

urvey cost and cost waste 

The cost of sampling a cluster is comprised of a fixed cost (the 

verage cost of getting to a cluster) and a variable cost (based on 

he number of secondary units selected). To calculate an estimated 

ost for each sample design, two components were needed: the 

ost of measuring one household, and the cost of measuring a clus- 

er (aside from the cost of measuring households within the clus- 

er). Our basis for these two cost component estimates came from 

ork similar to that conducted by Slaven et al. (2020) . Based on 

ur findings, the following function was derived to calculate over- 

ll cost (USD) of a given sampling design: 

ost = 479 ∗ clusters + 29 ∗ households + 242 ( 1 + I > 30 households ) 

The notation I > 30 households represents an indicator variable for 

ampling beyond the first 30 households in the segment. 

Aside from the raw cost of each sampling scheme, a novel met- 

ic called cost waste was also developed to determine the cost ef- 

ciency of each sampling scheme relative to the efficiency of the 

F prevalence estimate. Cost waste can be thought of as the fund- 

ng used inefficiently toward the prevalence estimate relative to a 

imple random sample. Cost waste was calculated using the per- 

entage of the sample efficiently used (calculated as the inverse 

https://tropicaldata.org
https://github.com/jgallini/trachoma-survey-sample-macros
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(

f the design effect multiplied by 100: p used = 

100 
D e f f 

) and the cost 

stimates derived above for each sampling scheme, using the fol- 

owing formula: waste = cost ∗ ( 1 − p used ) . 

ata analysis 

For all sampling schemes, the following metrics were used for 

nalysis: the width of the 95% uncertainty interval (UI), the propor- 

ion of incorrect MDA decisions made relative to the WHO MDA 

ecision cut-points, the proportion of low MDA decisions made, 

nd the total cost wasted per sampling scheme. 

To determine the relative precision of prevalence estimates, 

ootstrapping techniques were used. Bootstrapping (in this case 

ith 10 0 0 replicates) allows for estimation of parameters like the 

ean and variance, and consequently the calculation of empiri- 

al confidence (or uncertainty) intervals (UIs) ( Gelman and Green- 

and, 2019 ). The widths of the intervals were compared across 

ampling schemes as the metric for comparing precision, and were 

xamined relative to the number of clusters selected. 

To compare sampling schemes with one another relative to 

DA guidelines, the proportion of the 10 0 0 samples that resulted 

n an incorrect MDA decision relative to the true district-level 

revalence was calculated. The proportion of the 10 0 0 samples 

n which a low incorrect MDA decision was made (i.e. one addi- 

ional round of MDA instead of three rounds) was calculated for 

ach sampling scheme as an additional metric. The last metric cal- 

ulated for each design was cost waste, mathematically defined 

bove. Figures were created using both SAS 9.4 and R 4.0. 

ESULTS 

luster level 

When a true TF prevalence of 0.38 was assumed ( Figure 1 a), 

nd when drawing between 16 and 18 clusters, the lower bound of 

he 95% UI crossed the MDA cut-point of 0.3 (below 0.3 warrants 

hree rounds of MDA; above 0.3 warrants five rounds of MDA). In 

his theoretical district, if at least 18 clusters were sampled, 95% 

f samples would result in the correct decision for MDA accord- 

ng to the WHO guidelines. With an assumed prevalence rate of 

.31 ( Figure 1 b), it was observed that regardless of the number of 

lusters sampled, the incorrect decision (three rounds of MDA in- 

tead of five rounds of MDA) was possible given how close the true 

revalence was to the MDA cut-point of 0.3. 

At a true prevalence of about 0.20 ( Figure 1 c), the correct deci-

ion is made 95% of the time regardless of the number of clus- 

ers sampled. With an assumed true district prevalence of 0.08 

 Figure 1 d), one of three MDA decisions could be made depend- 

ng on the sample: three rounds of MDA, one round of MDA (the 

orrect decision according to the WHO guidelines), or the district 

oving into surveillance while pausing MDA programs. Regardless 

f the number of clusters sampled, any of these three decisions 

as possible, with a roughly 10% chance of incorrectly conclud- 

ng that the district fell below the 5% threshold at both 20 and 30 

lusters, and a 1% chance of this happening in two subsequent sur- 

eys (i.e. an impact and then a surveillance survey). With a district 

revalence of 0.04 ( Figure 1 e), there was a risk of making an incor-

ect MDA decision regardless of the number of clusters sampled. 

inally, when a district has a very low prevalence (0.01), the cor- 

ect decision to terminate MDA programs will be made with 95% 

f samples, regardless of how many clusters are sampled. 

roportions of incorrect and low decisions 

The proportion of incorrect MDA decisions out of the 10 0 0 sam- 

les peaked around the treatment decision cut-points (5%, 10%, 
103 
0%), which is expected given that no amount of precision (un- 

ess the entire population is selected) will yield a consistently cor- 

ect decision when the true prevalence itself is on the borderline 

 Figure 2 ). The proportion of wrong decisions dropped to its low- 

st point among all cluster levels midway between the treatment 

ecision cut-points. When examining the proportion of low MDA 

ecisions ( Figure 3 ), peaks were observed near the treatment de- 

ision cut-points, with the proportion of wrong decisions dropping 

ff between cut-points. For example, the probability of incorrectly 

stimating that a district was below the 5% threshold when in fact 

he district was in the 5–10% range hovered around 20%, regard- 

ess of the number of clusters sampled ( Figure 3 ). Furthermore, 

he probability of this happening in two consecutive surveys (i.e., 

n impact survey followed by a surveillance survey) was this value 

quared, or 4%. 

ousehold level 

The second stage of sampling involved selecting either 10, 20, 

0, 40, 50, or 60 households. When holding the number of clusters 

onstant at 30 and varying the number of households selected, a 

imilar trend to the cluster level results was observed ( Figure 4 ). 

here was little separation across the numbers of households se- 

ected both for incorrect decisions made and low decisions made 

 Figures 4 and 5 ). 

ost waste 

The cost waste per surveyed district was calculated for sam- 

ling schemes with all possible combinations of 15, 20, 25, and 

0 clusters, and 10, 20, 30, 40, 50, and 60 households. Our simula- 

ions consistently reflected that the highest cost waste relative to a 

imple random sample of the same size was observed when more 

lusters were selected, regardless of the true TF prevalence in a 

istrict ( Figure 6 ). For example, a 20 cluster by 30 household sam- 

le in a district with a true TF prevalence of 0.38 was estimated to 

aste $10,201, whereas a 15 cluster by 30 household sample was 

stimated to waste $7,826. 

ISCUSSION 

District-level TF prevalence plays a large role in the ability to 

btain precise prevalence estimates, so prior knowledge of said 

revalence should inform sample design decisions. Overall, it ap- 

eared that sampling 30 clusters per district did not achieve ad- 

quate precision to justify the cost wasted in many scenarios, 

articularly around treatment thresholds. In Ethiopia, where hun- 

reds of district-level surveys will be required over the next 5–

0 years, it is important for survey methodology to be an adap- 

ive, data-driven process to best meet the needs of the country at 

 given time. Sampling 15 clusters of 20–30 households in sus- 

ected moderate-to-high prevalence districts and 20 clusters of 

0–30 households in districts suspected to be near the 5% thresh- 

ld appears to be a balanced approach. While this number of clus- 

ers will result in fewer children sampled, the increase from 20 to 

0 clusters does not guarantee a level of precision that is worth 

he cost. Future operational research into alternative survey ap- 

roaches would be useful for trachoma programs, and should be 

onducted with a focus on cost and sustainability ( Weiss et al., 

021 ; Andrade-Pacheco et al., 2020 ). 

Despite progress, there remain areas with persistently high lev- 

ls of trachoma ( Sata et al., 2021 ). For these districts, repeat sur- 

eys will likely be needed in the long term. Our models found that 

n districts that warranted five rounds of MDA before resurveying 

 > 30% prevalence), the 95% UIs remained as wide as 20%, even 
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Figure 1. Precision of TF prevalence estimates by clusters sampled. True prevalence in order of panels: 38%, 31%, 20%, 8%, 4%, 1%. Regions of probability where an incorrect 

MDA decision is made relative to WHO MDA thresholds are shaded red. Green line: ‘true prevalence’, bold lines: 95% uncertainty intervals; dashed lines: WHO MDA cut- 

points. 

Figure 2. Proportions of wrong MDA decisions by cluster number and true preva- 

lence. Peak probabilities of an incorrect decision occur at the MDA decision thresh- 

olds (vertical gray dashed lines). The lowest probabilities of an incorrect decision 

are found between two MDA thresholds. 
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Figure 3. Proportions of low MDA decisions by cluster number and true prevalence. 

Peak probabilities of a low MDA decision occur at the MDA treatment thresholds 

(vertical gray dashed lines). The lowest probabilities of a low decision are found 

between two MDA thresholds. 
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a

hen sampling an unrealistically high 34 clusters. While this ob- 

ervation may be initially frustrating to trachoma teams attempt- 

ng to achieve 2% precision in all districts ( Solomon et al., 2018 ),

n practice, 2% precision is unnecessary with a TF prevalence as 

igh as 35%, since the difference between 30% and 40% TF preva- 

ence is programmatically negligible: both districts will need MDA 

or many years, as indicated by past trends ( Ngondi et al., 2008 ;

ata et al,. 2021). Designing surveys for that level of precision in 

hat setting is unrealistic to achieve, and will not substantially im- 

rove the quality of treatment decisions. 
104 
Assuming an a-priori TF prevalence of 4% in suspected high- 

nd moderate-prevalence districts is probably unrealistic given the 

ongitudinal trends in much of Amhara. Programs should consider 

asing sample size calculations on realistic assumptions for each 

istrict, using available data when possible. Given the long history 

f trachoma surveillance in Amhara, there is a significant amount 

f data available for approximating the prevalence in a district 

rior to the next survey. Previous reports have found that a contin- 

ation rate (rate of evaluation units requiring continued MDA after 

n impact survey) of greater than 71% implies that an impact sur- 
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Figure 4. Proportions of incorrect decisions by household number and true preva- 

lence. Peak probabilities of an incorrect decision occur at MDA decision thresholds 

(vertical gray dashed lines). The lowest probabilities of an incorrect decision are 

found between two MDA thresholds. 
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Figure 5. Proportions of low MDA decisions by household number and true preva- 

lence. Peak probabilities of a low decision occur at MDA decision thresholds (verti- 

cal gray dashed lines). The lowest probabilities of a low decision are found between 

two MDA thresholds. 
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(

ey was an inefficient use of funds versus an additional round of 

DA ( Solomon et al., 2020 ). In Amhara many impact survey rounds 

re expected to yield continuation rates greater than 71%, suggest- 

ng cost inefficiencies in the current impact survey schedules. 

In moderate-prevalence districts (10–30% TF prevalence), UIs 

ecome as narrow as 10–15% when sampling 34 clusters, which 

s still wide relative to treatment decisions. However, if MDA is to 
igure 6. Cost waste by sampling design in districts of true prevalence of (a) 0.38, (b) 0.1

cost waste calculated per district in USD). The highest cost waste occurs at 30 clusters a

105 
ontinue in a district, spending money to regularly resurvey in or- 

er to determine the exact prevalence is likely a high-cost, low- 

eward scenario. It has been determined that intraclass correla- 

ions (ICC) in Ethiopia are large and highly variable in comparison 

ith ICCs in Nigeria and Mozambique, which leads to low preci- 

ion relative to other countries ( Macleod et al., 2020 ). The authors 

urther state that precision of the prevalence estimate decreases 
5, and (c) 0.04 by number of clusters and number of households, Amhara, Ethiopia 

nd 60 households for each prevalence. 
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s TF prevalence increases. Thus, sampling 15–20 clusters in sus- 

ected moderate- and high-prevalence districts should limit costs 

n areas unable to achieve precise estimates regardless of survey 

ize. 

Obtaining precise district-level estimates becomes most rele- 

ant when determining if a district is below the 5% TF threshold. In 

istricts with assumed TF prevalence < 5%, despite achieving preci- 

ion of 2%, precision barely improves between sampling 14 clusters 

nd 34 clusters due to the homogeneity of prevalence among clus- 

ers. Our findings were in line with previous work using trachoma 

urvey data from three countries, which showed that ICC decreased 

harply at a low TF prevalence; thus, accurate estimates of TF can 

e made using smaller sample sizes ( Macleod et al., 2020 ). While it

s understandably tempting to sample as many clusters as possible 

n low-prevalence districts to ensure TF elimination, this practice 

oes not result in substantially improved precision, and may not 

e worth the increased cost ( Figure 2 ). Sampling 20 clusters in ex- 

ected low-prevalence districts would allow for balance between 

recision and cost-effectiveness. 

It is a common dilemma that trachoma seems to ‘reappear’ 

n districts where TF was below the 5% elimination threshold 

n a previous survey ( Godwin et al., 2020 ; Weiss et al., 2021 ;

ata et al. 2021 ). In recent reports from Amhara region, 24% of 

urveillance surveys found a TF prevalence ≥ 5% ( Sata et al., 2021 ). 

ur results provide strong evidence that concluding that TF has 

esurged in these districts may be misguided, since the simulations 

emonstrated that when the true TF prevalence was below the 

hreshold (0.04), surveys were as likely to estimate a prevalence 

reater than or less than the 5% threshold. A surveillance survey 

revalence over the threshold may simply represent the variabil- 

ty inherent in the surveys themselves ( Godwin et al., 2020 ). Reap- 

earance of trachoma observed in surveillance surveys is likely due 

o either: (1) the TF was never below the threshold and the pre- 

ious impact survey underestimated the true prevalence; or (2) 

he TF is still below the threshold and the current survey over- 

stimated true prevalence. Since restarting MDA is costly to elimi- 

ation programs, an urgent need exists for increased operational 

esearch around the use of alternative indicators and timelines, 

nd for an immediate review of survey approaches for trachoma 

urveillance. 

The number of households selected had little impact on sample 

ccuracy, suggesting that the current recommendation that teams 

urvey the number of households that can be reached in one day 

20–30) is sufficient for TF estimates. For all districts, cost waste 

ncreased as the number of clusters and households increased. The 

ost waste metric could help program managers better understand 

he tradeoff between precision and cost under a range of epidemi- 

logical settings. Furthermore, this metric could be useful for other 

TDs that rely on population-based surveys as a monitoring tool. 

A primary limitation of this study was the design of the pop- 

lation dataset and the associated assumptions. Only data from 

mhara were used to approximate prevalence distributions. Sam- 

le size recommendations from the simulations depend on the 

bility to estimate the general endemicity of a given district 

rior to surveying — something that may be difficult, especially 

or younger programs. There has also been limited work on the 

ost of trachoma surveys ( Chen et al., 2011 ; Slaven et al., 2020 ;

rotignon et al., 2017 ; Stelmach et al., 2019 ). Assumptions were 

ade in deriving the cost formula, and all costs only reflected es- 

imates. However, the relative cost of sampling designs is of inter- 

st for this study, not exact cost. Estimates were defined as ‘cor- 

ect’ or ‘incorrect’ according to WHO treatment threshold guide- 

ines (which are arbitrary to an extent), and not according to some 

ruly optimal strategy. Lastly, sources of non-sampling error, such 

s measurement errors, were ignored. These errors play a role in 

F estimation, and could also lead to incorrect MDA decisions. 
106 
There are many possible expansions of this study. The meth- 

ds used for these analyses have been made publicly available 

o allow trachoma-endemic countries to develop their own sam- 

ling schemes. One could examine the sampling methodology 

rends in small districts with fewer than 30 villages. These meth- 

ds could be also be extended to a re-evaluation of TT surveys, 

hich call for approximately 30 clusters under most conditions 

 Flueckiger et al., 2017 ). Cost waste could be used to evaluate sam- 

ling schemes for other NTDs, such as schistosomiasis and soil- 

ransmitted helminths. Lastly, as the TF prevalence in Amhara con- 

inues to drop over the coming years, the methods presented in 

his paper will be helpful in continually re-evaluating trachoma 

ampling methodology. 

ONCLUSION 

With a newly declared target date of 2030, trachoma programs 

erving the highest-burden areas need to be efficient with re- 

ources, balancing the need for high-quality monitoring with the 

idespread administration of interventions ( WHO, 2020a ). Efficient 

se of resources is required, and will promote improved progress 

owards the long-term elimination of trachoma as a public health 

roblem. 
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